THE STRUCTURE OF RIMOCIDIN: MASS SPECTROMETRIC ANALYSIS OF DERIVATIVES OF THE ANTIBIOTIC*

LEONARD FALKOWSKI, JAN ZIELIŃSKI, JERZY GOLIK, ELZBIETA BYLEC and EDWARD BOROWSKI

Department of Pharmaceutical Technology and Biochemistry, Technical University of Gdańsk, Gdańsk 80952, Poland

(Received for publication March 14, 1978)

The utility of various derivatives of rimocidin in assigning its structure by means of mass spectrometry is discussed.

The antifungal antibiotic rimocidin had been isolated from the culture of *Streptomyces rimosus* by DAVISSON *et al.*²⁾ The chemical studies performed by COPE *et al.*^{8,4)} led to a proposition for the structure of the aglycone moiety. These results had been revised in our laboratory and the structure of rimocidin established as I (Fig. 1).¹⁾ One year later, PANDEY and RINEHART⁵⁾ confirmed our results.

Results and Discussion

The field desorption mass spectrometry had been successfully applied for the determination of molecular weights of various antibiotics.⁶⁾ However, polyene macrolides containing in the molecule an aminosugar moiety did not reveal mass spectra enabling the determination of their molecular

weights.⁶⁾ Searching for derivatives of rimocidin, simple in preparation, formed in unambiguous reactions and with high yields, we synthesized the methyl esters of N-acetyl-dimethoximes of rimocidin (II) and octahydrorimocidin(III). Both derivatives preserved the structural features of the parent substances, and their field desorption mass spectra exhibited molecular ions as base peaks at m/e 881 and 889 respectively.

The N-acetyl-di-methoximino-rimocidin methyl ester (II) under treatment with acetic anhydride in pyridine at -10° C yielded a hexa-O-acetyl derivative (IV). The electron impact mass spectrum of IV (Table 1) exhibited prominent molecular ion at m/e 1133 and clusters of elimination ions formed by the loss of acetoxyl, acetic acid, methanol and mycosamine or mycosaminyloxy moieties:

- a) P-AcO *n*-AcOH (1074, 1014, 954, 894)
- b) P-AcO MeOH *n*-AcOH (1042, 982, 922, 862, 802, 742)
- c) P-mycosamine n-AcOH (844, 784, 724, 664, 604)

^{*} Presented in part at the Polish Chemical Society Meeting, Gliwice, 1972 and at Symposium: "The Applications of Spectroscopic Methods in the Research of Biologically Active Substances" organized by the Spectroscopic Subcomission of Analytical Commision of Polish Academy of Sciences in Gdańsk, October 18~19, 1974. The described results are also discussed in: "The Derivatives of Polyene Macrolide Antibiotics", LEONARD FALKOWSKI, Habilitation Thesis, Gdańsk 1976.

m e	Relative intensity %	m/e	Relative intensity %								
*											
43	100	128	37	541	4	636	3	802	2	982	4
44	37	129	22	543	2	664	2	844	2	983	3
45	81	142	23	573	4	665	2	846	3	1014	3
60	83	156	20	574	2	693	3	862	5	1015	2
84	22	169	21	575	2	694	2	863	2	1042	2
101	37	212	20	604	2	695	2	892	3	1074	2
102	56	230	22	605	2	724	4	894	3	1133	3
110	22	272	94	632	2	725	3	922	6	1134	2
111	25	273	34	633	10	742	3	923	5		
115	23	**		634	5	784	2	924	3		
117	22	497	2	635	4	785	2	954	2		

Table 1. Ions observed in the EI mass spectrum of N-acetyl-hexa-O-acetyl-di-methoximino-rimocidin methyl ester (IV).

Ions of relative intensities above: * 20% and ** 2% have been tabularized.

- d) P-mycosamine AcO n-AcOH (785, 725, 665, 605)
- e) P-mycosamine AcO MeOH n-AcOH (693, 633, 573)

The salient feature of the spectrum in the mass region below m/e 300 is the presence of ions derived from the mycosamine moiety: 272, 230, 212, 169, 156, 142, 102 and 101. This part of the spectrum in large measure superimposes with that obtained for N-acetyl-2,4-di-O-acetyl-mycosamine (V). The identity of the above-mentioned ions in the spectra of IV and V had been confirmed by means of high resolution mass spectrometry. Compound V had been obtained from the peracetylated derivatives of rimocidin under treatment with hydrogen chloride in methylene chloride at room temperature. We established, that under these conditions only the glycosidic bond in allylic position is cleaved. The mass and NMR spectra of V were identical with appropriate spectra of the acetylated aminosugar derived from peracetylated amphotericin B^{7} . This gave the evidence for the same ring size and conformation of the mycosamine moieties in both antibiotics.

Further structural informations revealed from the electron impact mass spectra of the hexa-O-trimethylsilyl derivatives of N-acetyl-di-methoximino-methyl esters of rimocidin (VI) and octahydrorimo-

cidin (VII) as well as N-acetylhexa-O-trimethylsilyl-octahydrorimocidin methyl ester (VIII). In all these spectra the molecular ions were significant (Table 2). Of dominating intensities in the mass spectra of persilylated derivatives were the ions formed as a result of the elimination of the trimethylsilanol and the substituted aminosugar moieties. Exemplary for that fragmentation could be the

Fig. 2 The structure of N-acetyl-di-methoximino-hexa-O-trimethylsilyl-octahydrorimocidin methyl ester and its main fragmentation pattern in the electron impact mass spectrum.

Table 2. Ions observed in the mass spectra of the methyl esters of N-acetyl-di-methoximino-hexa-O-
trimethylsilyl-rimocidin (VI), N-acetyl-di-methoximino-hexa-O-trimethylsilyl-octahydrorimocidin
(VIII), and N-acetyl-hexa-O-trimethylsilyl-octahydrorimocidin (VIII).

Compound VI		Compound VII							Compound VIII			
m/e	Relative intensity %	m/e	Relative intensity %	m/e	Relative intensity %	m/e	Relative intensity %	m/e	Relative intensity %	m/e	Relative intensity %	
*		*		**				*				
47	22	47	25	469	5	885	5	41	30	915	2	
73	92	73	100	476	4	941	2	43	54	916	1	
75	84	75	90	478	2	942	3	55	50	1062	1	
110	21	89	24	501	6	943	3	57	63	1158	2	
117	27	103	26	502	4	944	2	67	24	1159	1	
129	28	110	32	559	6	945	3	69	51	1160	1	
131	31	116	32	591	6	946	2	71	54	1173	1	
133	23	117	38	592	3	971	6	73	45	1174	1	
143	35	129	57	593	2	972	5	75	90	1221	1	
152	51	130	38	640	2	973	11	81	36	1247	4	
171	33	131	50	641	2	974	8	83	38	1248	4	
173	25	132	26	642	2	975	5	95	38	1249	3	
200	37	133	48	643	2	1014	2	97	36	1250	1	
217	21	143	55	646	2	1198	2	98	20	1263	1	
242	32	145	28	671	2	1199	2	109	20	1264	1	
332	100	147	24	672	2	1200	4	117	22			
333	64	152	71	673	2	1201	4	129	42			
404	25	158	43	695	2	1202	3	130	20			
**		159	26	731	2	1203	2	131	29			
562	2	170	28	732	2	1231	3	143	35			
591	3	171	57	759	3	1232	3	145	24			
756	2	173	71	760	3	1233	2	149	22			
757	3	174	33	761	3	1276	2	152	24			
847	2	175	24	762	4	1277	2	158	20			
875	4	184	38	763	3	1278	2	173	100			
876	4	189	23	764	2	1288	4	195	33			
8/7	3	200	50	791	6	1289	4	217	98			
952	2	204	28	792	3	1290	5	242	20			
953	2	212	45	793	2	1291	/	285	27			
966	2	217	98	794	3	1292	5	303	37			
981	3	242	62	811	2	1293	5	332	78			
982	2	244	28	823	2	1294	3	333	38			
***		246	31	849	3	1304	4	404	20			
118/	1	247	24	851	4	1305	4	***	-			
1281	2	258	28	852	3	1306	1	505	3			
1282	2	273	34	853	3	1307	6	523	3			
1283	1	275	26	854	4	1308	4	524	2			
1284	1	303	52	855	2	1309	2	537	2			
1312	1	314	24	830	2	1319	7	555	2			
1313	2	332	63	860	2	1320	11	627	2			
1514	1	333	25	009	2	1321	10	645	1			
		240	55	0/9	3	1322	10	640	2			
		340	67	000	27	1323	0	725	2			
		404	107	001	12	1324	3	133	1			
		405	40	883	15			826	2			
		420	20	884	10			020	1			
	-								1			

Ions of relative intensities above: * 20%, ** 2% and *** 1% have been tabularized.

Table 3. Ions observed in the mass spectra of N-acetyl-N-methyl-undeca-O-methyl-tetradecahydrorimocidin (IX) and its hexadeuterio analogue (X).

	Relative intensity			Relative	intensity		Relative intensity			Relative intensity	
m/e			m/e	(%×10)		m/e	(%×10)		m/e	(%×100)	
	IX	X		IX	X		IX	X		IX	X
*			383		11	620	3		****		15
71	10	17	301	18		621	3		863		15
71	10	16	204	10	10	622	5		864		20
72	10	10	394		10	622	2		004	20	20
15	13	11	395		10	623	3	_	904	30	
87	11	12	397	10		624		3	907	-	8
97	10		***			625		3	908		10
98		10	475	3	-	635	8	-	909		11
101	17	20	477	4	-	636	4	-	910		10
129	31	20	478		3	637	7		915	45	
130		11	479		4	638	4		916	30	10
131	27	-	480		7	639	3	4	920	30	11
132		10	481	3	6	640		6	921		13
133		10	482	-	3	641	L	8	922		10
142	11	15	484	-	3	642		5	932	30	
156	11	13	489	3		643		3	934	30	
201	23	25	491	4		651	3		936	50	
211	10	20	493	4		652	6		937	30	6
211	10	11	507	4		653	7		938		8
212	100	100	500	5		654	6		939		8
230	100	100	509	5	5	655	2	_	939		8
231	12	10	511	_	5	655	5	2	940		7
243	23		512		10	657	-	3	941		10
244		15	513		10	667	3		942		10
246	16	17	514		5	668	3		943		6
** Relative intensity		515		3	669	4	-	946	15		
	(%×10)		539	3		670	3		947	38	
251		31	541	4	-	672		5	948	15	
253		10	543		5	673		8	949	22	
255		10	544		9	674		4	953	-	5
256		15	545		9	701	9		954		6
257	10		546		5	702	5		963	15	
275	60		547		3	703		6	964	38	
276	10	18	571	5		704		14	965	17	
277	20	18	572	3		705		19	969		5
281	20	_	573	6		706		8	970		5
283	19	32	574	3	-	707		3	971		5
284		12	575	3	3	731	6		977	15	
295	30		576		6	732	3		978	16	
297		10	577		8	733	20		979	15	
208		11	578		5	734	12		983		3
200		10	570		3	735	3		984		2
299		10	603	5	5	736	5	4	985		3
227	24	10	604	3		730		Q	705		5
321	24	10	605	5		730	_	0			
329		10	605	0		730		010			
330		10	000	3	_	739	_	0			
331		11	607	3	4	740		4			
339		10	608	3	8	834	4				
359	11		609		10	858	4				
362		10	610		6	860	10				
364	11		611		3	861	5				
369		10	619	3		862	4				

Ions of relative intensities above * 10%, ** 1%, *** 0.3% and **** 0.03% have been tabularized.

spectrum of VIII and the series of ions P-mycosamine - n-TMSOH: 825, 735, 654 and 555.

Of prominent intensities were the ions derived from the aminosugar moiety: m/e 332, 242 and 152. The presence of significant ions formed by the cleavage of the carbon-carbon and the lactone bonds of the macrolide ring allowed the location of the oxygen functions in the antibiotic: ions at m/e 189, 404, 314, 591, 501 and 469 for VI, and VII (Fig. 2), and 285 and 195 for VIII.

The final location of the oxygen functions in rimocidin, including the position of carbonyls, had been assigned upon analysis of the mass spectra of N-acetyl-N-methyl-undeca-O-methyl-tetradeca-hydrorimocidin (IX) and its hexadeuterio analogue (X) (Table 3). The most characteristic features of the fragmentation patterns of these compounds had been shown in our previous paper¹).

The utility of various derivatives for elucidation of the structure of the antibiotic should be characterized as following: The simplest derivative of rimocidin which revealed prominent molecular ions in the F.D. mass spectrum was its N-acetyl-di-methoxime-methyl ester; substitution of the ketone with methoxime, the carboxyl with methyl ester, acylation of the amino group and further acetylation or silylation of the hydroxyls afforded derivatives where E.I. mass spectra exhibited prominent molecular ions as well as elimination and fragmentation ions significant for the assignment of the structure of the antibiotic; diagnostic for the placement of the oxygen functions in the molecule of the antibiotic were the E.I. mass spectra of permethylated tetradecahydrorimocidin, its hexadeuterio analogue and the persilylated octahydrorimocidin.

GOLDING *et al.*⁸⁾ applied the E.I. high resolution mass spectrometry for the determination of the molecular weights and elemental composition of lagosin, filipin and their decahydro derivatives. More detailed discussion of the mass spectra of persilylated polyene macrolides had been published by HAEGELE and DESIDERIO.⁹⁾ The authors prepared these derivatives in the reaction with hexamethyl-disilazane-trimethylchlorosilane mixture in pyridine. In these conditions the chromophore of the antibiotic is partially degraded, whereas complete substitution of the hydroxyl groups and minimum decrease of the UV extinction coefficient during the silylation procedure had been achieved by using trimethylsilylimidazol (TSIM) in pyridine or nonpolar solvents like heptane, cyclohexane and carbon tetrachloride*.

The peracetylated derivatives, in contradiction to the persilylated, are stable in polar solvents. That property enables isolation of pure compounds and elucidation of their structure by means of various spectroscopic techniques. The mass spectra of peracetylated derivatives are more complicated as compared to the spectra of trimethylsilyl ethers, however, they had been successfully applied in structure assignment of peracetylated polyene macrolides which do not contain an aminosugar moiety.^{9,11}

The permethyl ethers could be obtained for hydrogenated antibiotics and in rather low yields because of the drastic conditions of the reaction. Their advantages are the stability, thermal as well as chemical, and lower molecular weights as compared to the persilyl derivatives. That type of derivatives had been applied in our laboratory for the elucidation of the structure of perimycin A.¹²

Experimental

Instrumental analysis

The mass spectra were obtained on a Varian MAT 711 double focusing spectrometer by means of a direct introduction probe. The instrumental conditions were as follows: (a) electron impact mode—

^{*} Unpublished data obtained by one of us (L.F.) in Dr. E. C. HORNING Laboratory, Institute for Lipid Research, Houston, USA.

VOL. XXXI NO. 8

electron energy, 70 eV; emission current, 0.8 mA; accelerating voltage, 8 kV; ion source temperature, 250°C; resolution (10% valley definition), 1,000 and 10,000 for exact mass determinations; (b) field desorption mode—wire heating current, 14~18 mA; ion source temperature, 70~100°C, accelerating voltage, 8 kV; extraction voltage, -4 kV.

The ¹H NMR spectra were measured on a 80 MHz Tesla BS-487 instrument. The IR and electronic spectra were recorded on UR-10 and UV-VIS Carl Zeiss Jena instruments.

General procedures

Thin-layer chromatography has been performed on DC-Alufolien Kieselgel 60 (Merck). The spots were visualized with cerium sulphate (1%), molybdenic acid (2.5%) in 10% sulphuric acid. The column chromatography has been carried out on silica gel 60 minus 0.063 mm (above 230 mesh ASTM, Merck). Solvents were removed under reduced pressure using a rotatory evaporator. Magnesium sulphate was used as drying agent for the solvents. Solid samples were dried under reduced pressure at room temperature in the presence of phosphorus pentoxide.

The silvlation procedure

Five mg of analyzed compound was suspended in 1 ml of toluene - pyridine - N-trimethylsilylimidazole (10: 1: 1, v/v) mixture, left overnight and the solvents removed at room temperature under reduced pressure (0.1 mmHg). Two ml of heptane had been added to the residue, the mixture centrifuged, the supernatant concentrated to 0.2 ml and further used for the mass spectrometric measurements.

Rimocidin

The crude antibiotic ($E_{1cm}^{1\%}$ 380 at 304 nm) had been supplied by Pharmaceutical Works Tarchomin "Polfa" as a fermentation product of a standard strain of *S. rimosus*. It has been purified by means of counter-current distribution in solvent system chloroform - methanol - water (2 : 2 : 1, v/v). After 250 transfers the solvents were concentrated with butanol. The crystalline substance was centrifuged, washed with ethyl ether and dried. $E_{1cm}^{1\%}$ 1,025 at 304 nm, IR: 1010, 1070, 1110, 1140, 1170, 1190, 1270, 1405, 1575, 1630, 1715, 2930, and 3450 cm⁻¹.

N-Acetylrimocidin

Two g of rimocidin was suspended in 10 ml of methanol - pyridine (5 : 1, v/v), cooled to 0°C stirred and a mixture of methanol - pyridine - acetic anhydride (2 : 2 : 1) was added dropwise. The reaction was completed after 3 hours (TLC, solvent system, ethyl acetate - acetic acid - water (4 : 1 : 1, v/v)). The product was precipitated with ethyl ether, washed with ethyl ether, hexane, centrifuged and dried. Yield 1.43 g, E_{1em}^{18} 900 at 304 nm.

N-Acetyl-di-methoximino-rimocidin

To a solution of 400 mg of rimocidin in 6 ml of pyridine, 40 mg of methoxime hydrochloride has been added and left overnight at room temperature. The mixture was poured into 50 ml of butanol, the organic solvent washed with water, concentrated and worked up as described above. Yield 340 mg, E_{1em}^{16} 910 at 304 nm.

N-Acetyl-di-methoximino-rimocidin methyl ester

To a cooled solution of 200 mg of N-acetyl-di-methoximino-rimocidin in 20 ml of methanol a solution of diazomethane in ethyl ether was added dropwise until the substitution of the carboxylic group was completed. The reaction was controlled by means of TLC in the solvent system, chloroform - methanol - water (50 : 30 : 3, v/v). After addition of 10 ml of butanol the solution was concentrated to 5 ml, the product precipitated with hexane - ethyl ether (1 : 1, v/v) and worked up as described for rimocidin. Yield 150 mg, $E_{1cm}^{1\%}$, 890 at 304 nm, F.D. mass spectrum, ions at m/e (rel. int): 864 (23 %), 866 (23 %), 868 (22 %), 879 (32 %), 880 (86 %), 881 (100 %), 882 (46 %), 889 (22 %), 893 (20 %), 894 (24 %), 895 (27 %), 896 (23 %).

Octahydrorimocidin

The octahydro derivative of rimocidin had been obtained according to the procedure described by COPE *et al.*³⁾ The product was purified by means of chromatography on silica gel with the solvent system, chloroform - ethyl acetate - methanol - water (200 : 100 : 40 : 15, v/v).

Methyl esters of octahydrorimocidin, N-acetyloctahydrorimocidin and its dimethoxime

These compounds have been prepared analogically to appropriate derivatives of rimocidin. F.D. mass spectrum of N-acetyl-di-methoximino-octahydrorimocidin methyl ester; m/e (rel. int), 855 (26%), 859 (28%), 860 (20%), 885 (28%), 886 (22%), 887 (96%), 888 (80%), 889 (100%), 890 (35%).

Hexa-O-acetyl-di-methoximino-rimocidin methyl ester

To a cooled (-15°C) and stirred solution of 300 mg N-acetyl-di-methoximino-rimocidin methyl ester in 5 ml of pyridine, 20 ml of pyridine - acetate anhydride (2:1, v/v) has been added dropwise, the mixture was left for 24 hours at -10°C , and then poured on ice. The product was extracted with chloroform, the solvent washed with water, dried and concentrated. The derivative was precipitated with hexane, centrifuged, washed with hexane and dried. Yield 250 mg, $E_{1cm}^{1\%}$ 750 at 304 nm. It was further purified by means of chromatography on silica gel in the solvent system, chloroform - ethyl acetate (5 : 1, v/v) and the fractions directly used for the mass spectrometric analysis.

N-Acetyl-N-methyl-undeca-O-methyl-tetradecahydrorimocidin

To a stirred suspension of 100 mg of N-acetyloctahydrorimocidin methyl ester in 10 ml of tetrahydrofuran 70 mg of lithium borohydride in 10 ml of tetrahydrofuran has been added and the mixture refluxed for 3 hours. The excess of reducing agent has been decomposed by addition of acetone (10 ml) and methanol (10 ml). The solution was acidified with Dowex 50(H⁺), concentrated and purified on silica gel in the solvent system, chloroform - ethyl acetate - methanol - water (100 : 100 : 90 : 15, v/v). Yield 76 mg, F.D. mass spectrum ions at m/e (rel. int): 809 (37%), 810 (70%), 811 (100%), 812 (50%), 838 (33%).

The polyol obtained was suspended in 5 ml of tetrahydrofuran and stirred for 48 hours with 300 mg of sodium hydride and 0.3 ml of methyl iodide. The work up was accomplished by addition of 20 ml of benzene, the organic solvent washed successively with water - acetic acid (10 : 1, v/v), water, dried and evaporated. The residue was purified on silica gel in the solvent system, chloroform - ethyl acetate - benzene - methanol (80 : 40 : 30 : 5, v/v) and analyzed directly by means of mass spectrometry.

Acknowledgement

The authors acknowledge the financial support of the Institute of Organic Chemistry Polish Academy of Sciences.

References

- FALKOWSKI, L.; J. GOLIK, J. ZIELIŃSKI & E. BOROWSKI: The structure of rimocidin. J. Antibiotics 29: 197~198, 1976
- DAVISSON, J. W.; F. W. TANNER, Jr., A.C. FINLAY & I. A. SOLOMONS: Rimocidin, a new antibiotic. Antiibiot. & Chemoth. 1: 280~290, 1951
- COPE, A. C.; E. P. BURROWS, M. E. DERIEG, S. MOON & W. D. WIRTH: Rimocidin. I. Carbon skeleton, partial structure and absolute configuration at C-27. J. Am. Chem. Soc. 87: 5452 ~ 5460, 1965
- COPE, A. C.; U. AXEN & E. P. BURROWS: Rimocidin. II. Oxygenation pattern of the aglycone. J. Am. Chem. Soc. 88: 4221 ~ 4227, 1966
- PANDEY, R. C. & K. L. RINEHART, Jr.: Polyene antibiotics. VIII. The structure of rimocidin. J. Antibiotics 30: 146~157, 1977
- RINEHART, Jr., K. L.; J. C. COOK, Jr., K. H. MAURER & U. RAPP: Field desorption mass spectra of antibiotics. J. Antibiotics 27: 1~13, 1974
- 7) BOROWSKI, E.; J. ZIELIŃSKI, T. ZIMINSKI, L. FALKOWSKI, P. KOŁODZIEJCZYK, J. GOLIK, E. JERECZEK & H. ADLERCREUTZ: Chemical studies with amphotericin B. III. The complete structure of the antibiotic. Tetrahed. Lett. 1970: 3909~3914, 1970
- GOLDING, B. T.; R. W. RICKARDS & M. BARBER: The determination of molecular formulae of polyols by mass spectrometry of their trimethylsilyl ethers; The structure of the macrolide antibiotic filipin. Tetrahed. Lett. 1964: 2615~2621, 1964
- HAEGELE, K. D. & D. M. DESIDERIO, Jr.: The structural elucidation of polyene macrolide antibiotics by mass spectrometry. Nystatin, amphotericin B and pimaricin. Biomed. Mass Spectrom. 1: 20 ~ 28, 1974

VOL. XXXI NO. 8

- PANDEY, R. C. & K. L. RINEHART, Jr.: Polyene antibiotics. V. Characterization of components of the filipin complex by mass spectrometry. J. Antibiotics 23: 414~417, 1970
- 11) PANDEY, R. C.; K. L. RINEHART, Jr., D. S. MILLINGTON & M. B. SWAMI: Polyene antibiotics. VI. The structures of dermostatins A and B. J. Antibiotics 26: 475~477, 1973
- 12) KOŁODZIEJCZYK, P.; J. ZIELIŃSKI, J. PAWLAK, J. GOLIK, L. FALKOWSKI & E. BOROWSKI: The structure of perimycin A. Tetrahed. Lett. 1976: 3603~3606, 1976